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Abstract
Knowledge distillation improves large language
model (LLM) reasoning by compressing the
knowledge of a teacher LLM to train smaller
LLMs. On-policy distillation advances this ap-
proach by having the student sample its own tra-
jectories while a teacher LLM provides dense
token-level supervision, addressing the distribu-
tion mismatch between training and inference
in off-policy distillation methods. However, on-
policy distillation typically requires a separate,
often larger, teacher LLM and does not explic-
itly leverage ground-truth solutions available in
reasoning datasets. Inspired by the intuition that
a sufficiently capable LLM can rationalize ex-
ternal privileged reasoning traces and teach its
weaker self (i.e., the version without access to
privileged information), we introduce On-Policy
Self-Distillation (OPSD), a framework where a
single model acts as both teacher and student by
conditioning on different contexts. The teacher
policy conditions on privileged information (e.g.,
verified reasoning traces) while the student policy
sees only the question; training minimizes the per-
token divergence between these distributions over
the student’s own rollouts. We demonstrate the
efficacy of our method on multiple mathematical
reasoning benchmarks, achieving 4-8× token effi-
ciency compared to reinforcement learning meth-
ods such as GRPO and superior performance over
off-policy distillation methods.

1. Introduction
Recent advances in large language models (LLMs) have
demonstrated impressive capabilities in reasoning and in-
struction following. Achieving these capabilities during
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post-training typically relies on reinforcement learning
methods such as Reinforcement Learning with Verifiable
Rewards (RLVR) (e.g., GRPO (Shao et al., 2024; Guo et al.,
2025; Team et al., 2025; Rastogi et al., 2025; Yu et al.,
2025)), supervised fine-tuning (SFT) on high-quality rea-
soning datasets (Guha et al., 2025; Team et al., 2025; Xi-
aomi, 2026), or knowledge distillation, where recent work
has shown that distillation from advanced teacher models
can outperform RL in both performance and training effi-
ciency (Yang et al., 2025; Xiaomi, 2026; Lu & Lab, 2025).

Despite their respective successes, each approach has in-
herent limitations. RLVR suffers from inefficiencies in-
cluding: (1) sampling a group of responses per prompt is
computationally expensive and can introduce high variance
in estimating the true value function; moreover, when all
samples are either correct or incorrect, the gradient sig-
nal vanishes (Yu et al., 2025; Zhao et al., 2025); and (2)
the reward signal is sparse and uniformly applied across
all tokens in the generated output, neglecting fine-grained
token-level feedback. Supervised fine-tuning suffers from
exposure bias and weaker generalization (Agarwal et al.,
2024; Chu et al., 2025). Traditional knowledge distillation
provides dense token-level supervision from a teacher model
but relies on off-policy data (Hinton et al., 2015). Recent
advances in on-policy distillation—where a student model
samples its own trajectories while a teacher policy provides
dense token-level supervision—have demonstrated superior
sample efficiency by combining the distributional realism
of on-policy training with dense feedback (Agarwal et al.,
2024; Lu & Lab, 2025).

While on-policy distillation has shown strong performance,
it relies on a distinct teacher model to supervise the student.
Given that modern LLMs already exhibit strong reasoning
capabilities, we ask this research question: can a model
effectively serve as its own teacher through self-distillation?
Our approach is inspired by human learning: after solving a
problem incorrectly, a student can examine the correct solu-
tion, rationalize its steps, and identify where their reasoning
failed. Prior work has shown that for LLMs, evaluation is
often easier than generation (Sun et al., 2024; Naor, 1996).
We hypothesize that rationalization—explaining a given cor-
rect answer—is similarly easier than generation. Motivated
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Figure 1. Overview of On-Policy Self-Distillation (OPSD): Given a reasoning dataset S = {(xi, y
⋆
i )}Ni=1, we instantiate two policies

from the same LLM: a student policy pS(· | x) and a teacher policy pT (· | x, y⋆). The student generates an on-policy response
ŷ ∼ pS(· | x). Both policies then evaluate this trajectory to produce next-token distributions pS(· | x, ŷ<n) and pT (· | x, y⋆, ŷ<n) at
each step n. The learning objective minimizes the per-token divergence D(pT ∥pS) along the student’s rollout. Crucially, gradients
backpropagate only through the student’s logits, allowing the model to self-distil.

by this, we instantiate both the teacher and student policies
from a single LLM. The teacher policy is provided with
privileged information y⋆, such as the ground-truth answer
or a reference chain-of-thought, while the student policy
conditions only on the problem x. Concretely, the teacher
policy pT (· | x, y⋆) conditions on both the problem and
the privileged answer, whereas the student policy pS(· | x)
observes only the problem. We preserve the on-policy train-
ing paradigm by sampling trajectories ŷ exclusively from
the student policy, which then receives dense, token-level
supervision from the privileged teacher policy.

We therefore propose On-Policy Self-Distillation (OPSD),
a framework in which a single model plays both teacher
and student roles. The student samples its own trajectories
ŷ ∼ pS(· | x); we then compute the per-token divergence
between the student and teacher distributions and minimize
it over the student’s own rollouts. This formulation (i) uses
on-policy supervision (the student’s own trajectories), (ii)
provides dense per-token feedback, (iii) exploits ground-
truth solutions y⋆, and (iv) requires no separate teacher
model. The learning process is captured by the loss

LOPSD(θ) = E(x,y⋆)∼S Eŷ∼pS(·|x)

|ŷ|∑
n=1

D
(
pT (· | x, y⋆, ŷ<n)

∥∥∥ pS(· | x, ŷ<n)
)
. (1)

In summary, our contributions are as follows:

• We introduce On-Policy Self-Distillation, a novel frame-
work that enables a single model to act as both teacher
and student, leveraging ground-truth answers to provide
dense token-level supervision on student rollouts.

• We evaluate OPSD on four competition-level mathemat-
ical reasoning tasks, demonstrating that it outperforms

both RLVR (e.g., GRPO) and supervised fine-tuning base-
lines.

• We show that OPSD achieves better performance with
nearly 8× improved token efficiency and lower computa-
tional cost than GRPO.

• We analyze the impact of model scale, finding that mod-
erate model capacity is necessary for successful self-
distillation. We further compare different divergence
objectives and analyze the effect of student generation
length.

2. Background
2.1. Knowledge Distillation for Autoregressive Large

Language Models

Knowledge distillation transfers knowledge from a larger
teacher model to a smaller student model by training the
student to mimic the teacher’s behavior (Hinton et al.,
2015; Kim & Rush, 2016; Sanh et al., 2019). The core
insight is that the teacher’s soft probability distribution
over classes contains richer information than hard labels
alone, as it reveals the teacher’s learned similarities be-
tween classes. For auto-regressive language models, given
a dataset S = {(x, y⋆)} where x denotes an input and y⋆ is
the corresponding reference output, both teacher pT and stu-
dent pS define token-level distributions over vocabulary V .
Traditional supervised distillation minimizes a divergence
D between teacher and student distributions averaged over
a fixed dataset:

LSupervised Distillation(θ) = E(x,y)∼S [D(pT ∥pS)(y|x)], (2)

where D(pT ∥pS)(y|x) =
1
|y|

∑|y|
n=1 D(pT (·|y<n, x)∥pS(·|y<n, x)) measures

per-token discrepancy. However, this off-policy approach
suffers from distribution mismatch: the student encounters
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SFT/Off-Policy GRPO On-Policy On-Policy
Distillation Distillation Self-Distillation (Ours)

On-Policy Data ✗ ✓ ✓ ✓
Dense Learning Signal ✓ ✗ ✓ ✓
Low Sampling Cost ✓ ✗ ✓ ✓
No External Teacher ✓ ✓ ✗ ✓

Table 1. Comparison of training methods for reasoning tasks. On-Policy Self-Distillation (OPSD) combines the advantages of on-policy
training with dense feedback without requiring an external teacher model.

different partial sequences y<n during auto-regressive
generation at inference than those seen during training on
the fixed dataset, leading to compounding errors. On-policy
distillation (Agarwal et al., 2024; Lu & Lab, 2025; Xu
et al., 2024a) addresses this by training the student on its
own generated sequences ŷ ∼ pS(·|x), obtaining dense
token-level feedback from the teacher on these on-policy
samples:

LOn-Policy Distillation(θ) = Ex∼S [Eŷ∼pS(·|x)[D(pT ∥pS)(ŷ|x)]].
(3)

This approach connects distillation to imitation learn-
ing (Ross et al., 2011), where the student iteratively im-
proves by learning from the teacher’s guidance on its own
outputs, combining the on-policy relevance of reinforcement
learning with the dense reward signal of supervised learn-
ing, thereby mitigating exposure bias while maintaining
computational efficiency.

2.2. Reinforcement Learning with Verifiable Rewards

Reinforcement learning with verifiable rewards (RLVR)
has emerged as a popular approach for post-training large
language models, particularly on tasks with easily verifi-
able outcomes such as mathematics and coding, using al-
gorithms like Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) and Group Relative Policy Optimization
(GRPO) (Shao et al., 2024).

GRPO trains by sampling a group of G responses
{o1, o2, . . . , oG} from the current policy πθ for each prob-
lem x. Each response oi receives a binary reward ri ∈
{0, 1} indicating correctness. The method then assigns ad-
vantages to all tokens k = 1, . . . , |oi| within response oi
using a group-normalized reward:

Ai =
ri −mean({rj}Gj=1)

std({rj}Gj=1)
. (4)

This formulation can be understood through the value func-
tion lens: mean({rj}Gj=1) serves as a G-sample Monte
Carlo estimate of the value function V (x), while the sparse
binary reward ri represents the (undiscounted) state-action
value Q(x, oi). Critically, all tokens within a response share

the same advantage, as the reward signal is provided only
at the sequence level. The GRPO objective incorporates
a clipped surrogate loss to moderate policy updates, along
with a reverse KL penalty to prevent excessive deviation
from a reference policy:

LGRPO(θ) = E x∼S
o1,...,oG∼πθ(·|x)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
n=1

min (ρni Ai, clip (ρni , 1− ε, 1 + ε)Ai)

−βDKL[πθ(·|x)∥πref(·|x)]

] (5)

where ρni =
πθ(o

n
i |x,o

<n
i )

πθold (o
n
i |x,o

<n
i )

is the importance ratio, πθold is
the policy before the update, and ε controls the clipping
range.

While RLVR methods have demonstrated strong empirical
performance, they face two key limitations: (1) the reward
signal is sparse, providing only sequence-level feedback
rather than token-level guidance on where errors occur, and
(2) when all sampled responses receive identical rewards
(all correct or all incorrect), the advantages become zero,
preventing any policy update despite the computational cost
of sampling.

3. Methods
3.1. Learning from Verifiable Reasoning Dataset

We consider a dataset of problem-solution pairs S =
{(xi, y

⋆
i )}Ni=1, where each xi denotes a problem and y⋆i

is the corresponding reference solution, which may include
chain-of-thought reasoning. For brevity, we omit the sample
index i and use (x, y⋆) to denote a generic sample from the
dataset. We can exploit learning signals from this dataset
from differeny ways: Standard supervised fine-tuning (SFT)
on S can be viewed as off-policy distillation/imitation learn-
ing using expert trajectories, but it suffers from distribution
mismatch between training and inference. Reinforcement
learning from verifiable rewards (RLVR), such as GRPO,
addresses this by optimizing on-policy samples and assign-
ing binary rewards by comparing generated answers against
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Student Prompt

Problem: Find the derivative of f(x) = 3x2 + 2x− 5 at x = 2

Answer:

Teacher Prompt

Problem: Find the derivative of f(x) = 3x2 + 2x− 5 at x = 2

Here is a reference solution:
First find f ′(x) = 6x+ 2, then evaluate at x = 2: f ′(2) = 6(2) + 2 = 14

After understanding the reference solution, please try to solve this problem
using your own approach below:

Answer:

Figure 2. Prompt example for student and teacher policies. Both policies share the same parameters θ but differ in conditioning
context. The teacher receives the ground-truth solution y⋆ as privileged information before generation. To ensure a natural transition
before evaluating the student’s rollout, the teacher is prompted to rationalize and generate its own solution.

y⋆. However, RLVR is computationally expensive and the
reward signal is sparse, providing same feedback across all
tokens regardless of where errors occur. Alternatively, one
can train a process reward model (PRM) to provide dense,
token-level feedback during RL. However, acquiring labels
for PRM training is prohibitively expensive and difficult to
scale (Lightman et al., 2023; Zhang et al., 2025). On-policy
distillation works (Agarwal et al., 2024; Xu et al., 2024a; Lu
& Lab, 2025) address distribution shift by training on the
student’s own samples, but require a separate, often larger,
teacher model to provide supervision. We instead seek a
training signal that is dense, on-policy, and does not require
external teachers or reward models. This motivates our
On-Policy Self-Distillation approach. We summarize the
differences of these methods in Table 1.

3.2. On-Policy Self-Distillation

Motivation: Learning by understanding solutions. We
propose a different perspective inspired by how students
learn: when struggling with a problem, rather than extended
trial-and-error, a student can examine the solution, under-
stand the reasoning, and internalize the approach. Similarly,
if a model has access to the correct answer or reasoning y⋆

and is sufficiently capable, it can rationalize the reasoning
steps and teach itself—analogous to a student reviewing a
solution and retracing why it works. This intuition motivates
our framework: we exploit the ground-truth solution y⋆ di-
rectly as privileged information during training, enabling the
model to serve as its own teacher without requiring external
reward models or larger teacher models.

Teacher and student policies. We instantiate two condi-
tional distributions from the same language model pθ by
varying the conditioning context. The teacher policy con-
ditions on privileged information—both the problem x and
the reference solution y⋆:

pT (· | x, y⋆) ≜ pθ(· | x, y⋆).

The student policy observes only the problem statement,
matching the inference-time condition:

pS(· | x) ≜ pθ(· | x).

Critically, both policies share the same parameters θ but
differ only in their conditioning context. The teacher has
access to information unavailable at test time, allowing it
to provide informed guidance. To encourage the teacher
to naturally evaluate the student’s generation, we add a
prompt asking the teacher to generate a new solution after
rationalization, as shown in Figure 2.

On-policy sampling from the student. Given a problem
x, the student generates an on-policy response

ŷ = (ŷ1, . . . , ŷ|ŷ|) ∼ pS(· | x).

Both policies then evaluate this student-generated trajectory.
At each position n, they induce next-token distributions over
yn ∈ V conditioned on the same student prefix:

pS(yn | x, ŷ<n) , pT (yn | x, y⋆, ŷ<n) ,

where ŷ<n ≜ (ŷ1, . . . , ŷn−1).
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Algorithm 1 On-Policy Self-Distillation (OPSD)

Require: Reasoning dataset S = {(xi, y
⋆
i )}Ni=1; language model pθ; divergence D (e.g., JSDβ)

1: Define student policy pS(· | x) := pθ(· | x)
2: Define teacher policy pT (· | x, y⋆) := pθ(· | x, y⋆) ▷ same parameters; different conditioning
3: while not converged do
4: Sample a minibatch B ⊂ S
5: for all (x, y⋆) ∈ B do
6: Sample on-policy response ŷ ∼ pS(· | x)
7: Compute the token-wise divergence along the student rollout:

ℓ(x, y⋆)← D
(
pT ∥ pS

)
(ŷ | x) = 1

|ŷ|

|ŷ|∑
n=1

D
(
pT (· | ŷ<n, x, y

⋆)
∥∥ pS(· | ŷ<n, x)

)
8: Batch loss LOPSD(θ)← 1

|B|
∑

(x,y⋆)∈B ℓ(x, y⋆)

9: Update θ ← θ − η∇θLOPSD(θ)

10: Return trained parameters θ for inference-time policy pS(· | x)

Training objective: Full-vocabulary divergence. We in-
stantiate a full-vocabulary divergence objective that matches
the teacher and student next-token distributions at each po-
sition. Given a student-generated sequence ŷ, define the
trajectory-averaged, token-wise divergence

D
(
pT ∥ pS

)
(ŷ | x) ≜ 1

|ŷ|

|ŷ|∑
n=1

D

(
pT (· | x, y⋆, ŷ<n)

∥∥ pS(· | x, ŷ<n)

)
,

(6)

where pS(· | x, ŷ<n) and pT (· | x, y⋆, ŷ<n) denote dis-
tributions over the next token yn ∈ V . Here, D can be
any distribution divergence measure such as the generalized
Jensen-Shannon divergence JSDβ , defined for a weight
β ∈ [0, 1] as:

JSDβ(pT ∥pS) = βDKL(pT ∥m) + (1− β)DKL(pS∥m)
(7)

where m = βpT +(1−β)pS is the interpolated mixture dis-
tribution. This full-vocabulary formulation provides dense,
token-level feedback: the teacher, informed by y⋆, exposes
the student to the entire distribution over plausible next to-
kens and guides it toward reasoning paths that lead to the
correct answer.

We minimize the expected divergence between teacher and
student over on-policy student samples:

L(θ) = E(x,y⋆)∼S
[
Eŷ∼pS(·|x)

[
D
(
pT ∥ pS

)
(ŷ | x)

]]
.
(8)

Gradients are backpropagated only through the student pol-
icy pS , while the teacher pT acts as a fixed full-distribution
target conditioned on privileged information (x, y⋆).

Alternative objective: Sampled-token distillation
through policy gradient. Alternatively, following recent
on-policy distillation methods (Lu & Lab, 2025), we form a
sampled-token shaping signal (equivalently, a reverse-KL
signal on sampled actions) and optimize with policy gradi-
ent. For each position n in a sampled sequence ŷ, define the
advantage term

An(x, ŷ) = log pT (ŷn | x, y⋆, ŷ<n)−log pS(ŷn | x, ŷ<n) ,

and optimize the policy-gradient-style objective

L(θ) = −E(x,y⋆)∼S

[
Eŷ∼pS(·|x)

[
1

|ŷ|

|ŷ|∑
n=1

An(x, ŷ)

× log pS(ŷn | x, ŷ<n)

]]
.

(9)

In practice, An(x, ŷ) is treated as a constant with respect to
θ (i.e., gradients do not flow through the advantage), so that
gradients take the usual policy-gradient form An∇θ log pS .
Compared to the full-vocabulary divergence objective, this
on-policy shaping objective operates only on sampled to-
kens, using the teacher’s log-probabilities to provide dense,
trajectory-level shaping signals without explicitly matching
the full distribution at each step.

4. Experiments
In this section, we conduct comprehensive experiments to
answer the following research questions:

(1) How does OPSD compare to SFT and GRPO in terms
of mathematical reasoning performance and what’s the
improved sample efficiency? (§4.2)
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Table 2. Performance comparison across mathematical reasoning benchmarks for Qwen3 models from 1.7B to 8B. We report average@16
using suggested sampling parameters from the Qwen3 blog with temperature of 1.2 and generation length of 38k, with detailed parameter
in Table 5.

Method AIME24 AIME25 HMMT25 AMO-Bench Average

Qwen3-8B
Base (Instruct) 75.2 68.3 43.1 13.4 50.0
+ SFT 76.3 66.2 44.7 12.9 50.0
+ GRPO 76.7 68.7 45.0 14.8 51.3
+ OPSD 77.5 69.8 47.1 14.3 52.2

Qwen3-4B
Base (Instruct) 74.6 65.8 40.3 12.4 48.3
+ SFT 75.2 66.3 44.4 12.5 49.6
+ GRPO 75.6 67.1 42.7 12.8 49.6
+ OPSD 76.0 66.9 45.8 13.5 50.6

Qwen3-1.7B
Base (Instruct) 50.2 35.2 25.4 4.3 28.8
+ SFT 48.3 36.3 23.3 3.9 28.0
+ GRPO 52.1 38.3 26.7 4.5 30.5
+ OPSD 51.4 39.5 25.8 5.0 30.4

(2) How does OPSD scale across different model sizes,
does self-distillation require more powerful model abil-
ity? (§4.3.1)

(3) What is the effect of generation length on training per-
formance and sample efficiency? (§4.3.2)

(4) Does computing divergence over the full vocabulary
logits provide benefits compared to computing it only
over sampled tokens and optimizing through policy
gradient? (§4.3.3)

4.1. Experimental Setup

Models and datasets. We experiment with the
Qwen3 (Team, 2025b) model family at three scales: Qwen3-
1.7B, Qwen3-4B, and Qwen3-8B, using the instruct-tuned
versions. For training data, we use the mathematical reason-
ing subset of OpenThoughts (Guha et al., 2025), sampling
up to 30K problem-solution pairs with chain-of-thought
reasoning. We evaluate on competition-level mathematics
benchmarks including AIME 2024, AIME 2025, HMMT
2025 and Amo-Bench (An et al., 2025b).

Baselines. We compare against two methods trained on the
same dataset: (1) SFT, standard supervised fine-tuning on
expert trajectories, which can be seen as off-policy distilla-
tion from a more powerful LLM that generated the reasoning
traces; (2) GRPO (Shao et al., 2024), group relative policy
optimization with binary outcome rewards verified against
ground-truth answers.

Implementation details. For GRPO, we sample 8 re-

sponses per problem. For OPSD, we sample 1 response
per problem. We use Adam optimizer with a learning rate
of 1e-5, warmup ratio of 0.1, and cosine learning rate de-
cay. For the divergence measure in Eq. 6, we use JSDβ=0.5.
Importantly, we fix the teacher policy to be the initial pol-
icy, rather than the currently updating learning policy, as
we find this helps stabilize training and implicitly acts as
regularization to prevent excessive deviation from the initial
policy. All experiments are conducted on 8×A100 GPUs
with LoRA (Hu et al., 2022). More experimental details are
in Appendix 8.1.

4.2. Main Results

Table 2 reports results on competition-level mathematical
reasoning benchmarks. OPSD consistently outperforms
SFT and improves over the base model across scales; it
matches or exceeds GRPO at 4B/8B, and is comparable
at 1.7B. Notably, OPSD accomplishes these gains using
only a single rollout per problem, whereas GRPO requires
8 rollouts, demonstrating improved sample efficiency.

Superior Token Efficiency from Dense Teacher Feed-
back. In addition to improved accuracy, OPSD is signifi-
cantly more token-efficient than GRPO. Figure 3 compares
the two methods under the same effective training batch size
on Qwen3-4B. While GRPO relies on 8 rollouts with long
generation budgets of 16k, OPSD achieves higher perfor-
mance using substantially fewer generated tokens of 2k and
needs only 1 rollout per prompt. This efficiency stems from
dense token-level supervision from the teacher distribution,
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Figure 3. Token Efficiency of OPSD. We compare OPSD and GRPO on Qwen3-4B under the same effective training batch size, reporting
average@16 performance as a function of gradient update steps and total generated tokens. Both methods are trained with the same
effective batch size in terms of sampled generations per update, but differ in generation length: each generation is capped at 2048 tokens
for OPSD and 16384 tokens for GRPO. OPSD achieves comparable or better performance with substantially fewer generated tokens,
resulting in lower sampling cost and reduced training time. In this experiment, OPSD can be 4-8× more token-efficient than GRPO.

reducing sampling cost and training time without sacrificing
performance. We hypothesize that the early tokens are more
important for distillation than the later tokens, as the earlier
tokens can represent more important branching points.
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Figure 4. Pass@K performance averaged across four mathematical
reasoning benchmarks for Qwen3-4B. We study the effect of the
generation length of on-policy sampled student responses in OPSD,
comparing 1024, 2048, and 4096 tokens. Longer generations
provide more teacher signals. Increasing the generation length
from 1k to 2k and 4k consistently improves pass@K, with both 2k
and 4k substantially outperforming the 1k setting.

4.3. Discussions

4.3.1. EFFECT OF MODEL SCALE

Our method relies on the teacher policy’s ability to ratio-
nalize reference solutions when conditioned on privileged
information. Under a fixed dataset, this capability depends
on sufficient model capacity and is expected to scale with
model size. We therefore hypothesize that OPSD becomes

increasingly effective as models grow more capable of lever-
aging privileged context. To evaluate this, we apply OPSD
to the Qwen3 family at three scales: 1.7B, 4B, and 8B pa-
rameters. As shown in Table 2, OPSD provides limited gains
over GRPO at the 1.7B scale although OPSD still improves
over base and SFT at 1.7B., while yielding progressively
larger improvements at the 4B and 8B scales, consistent
with our hypothesis.

4.3.2. EFFECT OF GENERATION LENGTH

Since our objective operates at the token level (Eq. 6), the
number of generated tokens per sample directly determines
the amount of supervision signal available to the student.
Longer sequences expose the student to more teacher feed-
back, but they also increase computational cost and may
introduce noisy or uninformative continuations.

To study this trade-off, we conduct an ablation on Qwen3-
4B by varying the generation length of on-policy sampled
student responses among 1024, 2048, and 4096 tokens and
use full-vocabulary logit distillation. As shown in Figure 4,
increasing the generation length leads to clear improvements
in pass@K performance. In particular, both the 2048-token
and 4096-token settings significantly outperform the 1024-
token baseline, indicating that longer generations provide
more effective reasoning supervision.

4.3.3. LEARNING OBJECTIVE COMPARISON: FULL
VOCABULARY LOGITS DISTILLATION VS.
SAMPLED-TOKEN DISTILLATION

Our objective in Eq. 6 is defined as a per-token discrepancy
between the teacher and student distributions. In practice,
OPSD can instantiate this objective in two ways. (1) Full-
vocabulary logit distillation (as in GKD (Agarwal et al.,
2024)): for each token position, we compute D(pT ∥ pS)
over the entire vocabulary via a full softmax, yielding a
proper token-level f -divergence between the two policies.

7
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Table 3. Ablation on divergence computation strategies for OPSD on Qwen3-4B with 2048 generation length for distillation. We report
pass@8 accuracy on AIME25 and HMMT25. Full-distribution objectives (logit distillation) outperform sampled-token objectives.

Method Variant AIME25 HMMT25

OPSD w/ Full-vocabulary logit distillation (Agarwal et al., 2024) 84.1 60.0
OPSD w/ Sampled-token distillation (Lu & Lab, 2025) 82.1 57.3

(2) Sampled-token advantage policy-gradient objective
(as in the on-policy distillation method of Lu & Lab (2025)):
we evaluate teacher and student log-probabilities only at
the token actually sampled by the student, ŷn, and use
the reverse-KL term as a scalar advantage inside a policy-
gradient-style loss. Thus, the first variant directly matches
full token distributions, whereas the second optimizes an on-
policy RL objective shaped by the teacher’s log-probabilities
rather than a full-distribution divergence. We compare these
variants on Qwen3-4B using a 2048-token generation bud-
get during distillation. Table 3 summarizes the results. The
full-vocabulary divergence objective provides a consistent
gain over the sampled-token objective, improving AIME25
from 82.1% to 84.1% and HMMT25 from 57.3% to 60.0%.
This suggests that exposing the student to the full teacher
distribution offers richer supervision than relying solely on
per-token on-policy shaping. However, the full-vocabulary
computation incurs higher peak memory usage due to stor-
ing vocabulary-sized logits at every position, indicating a
trade-off between performance and efficiency.

5. Related Work
On-Policy Distillation methods train a student model di-
rectly on trajectories sampled from its own policy, while
a teacher model provides per-token guidance through KL-
based regularization or related objectives (Agarwal et al.,
2024; Xu et al., 2024a; Gu et al., 2024; Lu & Lab, 2025;
Xiaomi, 2026; Yang et al., 2025). These approaches miti-
gate distribution shift by optimizing directly on the student’s
visitation distribution, but they typically rely on a distinct
and often larger teacher model. In this work, we explore
whether an LLM can teach itself by conditioning on more
privileged answer information and leveraging its own rea-
soning capability to guide a weaker version of itself toward
improved reasoning. On-policy training paradigms are also
widely used in robotics and deep reinforcement learning,
such as DAgger (Ross et al., 2011), where a human teacher
provides corrective supervision on the states visited by the
student policy.

Improving LLM Reasoning through SFT and RL. SFT
and RL are two primary methods for improving LLM rea-
soning ability. SFT on high-quality reasoning traces has
demonstrated strong performance (Yu et al., 2023; LI et al.,
2024; Paster et al., 2023; Team, 2025a), and that smaller,

carefully curated datasets can outperform larger but noisier
collections (Ye et al., 2025; Muennighoff et al., 2025; Zhou
et al., 2023). However, prior work shows that SFT-based
reasoning often relies on memorization rather than robust
generalization (Chu et al., 2025). In contrast, RL-based
approaches optimize directly for outcome-based objectives
can exhibit stronger transfer to novel problems (Huan et al.,
2025). More recent algorithms such as GRPO (Guo et al.,
2025; Shao et al., 2024) enable scalable RL by estimating
advantages from group-level rewards without requiring an
explicit critic as in PPO (Schulman et al., 2017). Building
on this line of work, a growing body of research highlights
the effectiveness of reinforcement learning with verifiable
rewards (RLVR) for reasoning tasks (Yu et al., 2025; Liu
et al., 2025; Yue et al., 2025; An et al., 2025a; Zheng et al.,
2025).

LLM Self-Training. Our work is related to a growing
body of research demonstrating that LLMs can improve
by generating and exploiting their own supervision sig-
nals (Allen-Zhu & Li, 2020; Xu et al., 2024b; Chen et al.,
2024). Self-Instruct (Wang et al., 2023) and Self-Align (Sun
et al., 2023) demonstrate that large language models can
bootstrap instruction-following and alignment with mini-
mal human supervision by leveraging small sets of human-
written seeds—either instructions or principles—to gen-
erate synthetic training data. Context distillation (Snell
et al., 2022) shows that models can internalize the benefits
of privileged context tokens (e.g., instructions or scratch-
pads) by training a student to reproduce the same outputs
without access to such context at inference time through
SFT. Recent work on in-context editing (Qi et al., 2025)
demonstrates that models can learn new knowledge by opti-
mizing toward self-induced contextual distributions rather
than one-hot targets for knowledge editing. In the reasoning
domain, ReST (Gulcehre et al., 2023) and STaR (Zelikman
et al., 2022) improve performance through iterative loops of
rationale generation, filtering based on rewards or ground-
truth answers, and fine-tuning on successful samples. LLM
can also be used as a judge to generate RL rewards (Yuan
et al., 2024) for itself. While aligned with this self-training
paradigm, OPSD introduces a distinct approach: we per-
form on-policy, token-level self-distillation where the model
learns from its own outputs conditioned on privileged access
to ground-truth solutions. This transforms reasoning im-
provement into learning a conditional distribution induced

8
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by both the dataset’s ground-truth answers and the model’s
own understanding of how to reach them.

6. Conclusion
We introduced On-Policy Self-Distillation (OPSD), a sim-
ple yet effective framework for post-training large language
models on reasoning tasks. The intuition behind OPSD is
that a sufficiently capable reasoning LLM can teach itself
when it has access to privileged information about the an-
swer to a reasoning problem, utilizing its own rationalization
ability to grade its weaker self without access to the ground
truth. We experimentally demonstrated that OPSD achieves
better performance than off-policy distillation/SFT, and per-
forms on par with or better than GRPO, while exhibiting
significantly better sample efficiency than GRPO. Our abla-
tion studies reveal that sufficiently large language models
are required for successful self-distillation, and that gen-
erating more tokens during the online sampling phase and
full-vocabulary logit distillation leads to improved learning.

7. Limitations and Future Directions
Due to computational constraints, our experiments are lim-
ited to models up to 8B parameters. While we observe that
larger models benefit more from OPSD—consistent with our
hypothesis that self-rationalization requires sufficient model
capacity—it remains an open question whether this trend
continues at scales beyond 8B parameters, such as 70B or
larger frontier models. Several promising directions warrant
further investigation. First, our current framework does not
explicitly leverage correctness verification of generated an-
swers; incorporating such signals could provide additional
learning objectives beyond distribution matching. Finally,
problem difficulty plays a crucial role in self-distillation:
if reasoning problems exceed the model’s comprehension
threshold, the teacher policy cannot provide meaningful su-
pervision even with access to ground-truth solutions. This
suggests that curriculum learning strategies—gradually in-
creasing problem difficulty as the model improves—could
enhance training effectiveness. Exploring adaptive curricula
that maintain problems at the frontier of model capabilities
represents an important direction for scaling OPSD to more
challenging reasoning tasks.
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8. Appendix
8.1. Experimental Details

We provide the training and evaluation configurations for our SFT, GRPO and OPSD experiments in Tables 4, 6 and 5. Both
GRPO and OPSD methods use the same base hyperparameters where applicable to ensure fair comparison.

Table 4. Training Configuration for SFT.

Parameter SFT

Learning Rate 2× 10−5

Batch Size (per device) 2
Gradient Accumulation Steps 4
Effective Batch Size 64

LoRA Rank (r) 64
LoRA Alpha (α) 128
LoRA Target Modules q proj, k proj, v proj, o proj,

gate proj, up proj, down proj

Max Sequence Length 16000
Number of Training Epochs 4
Training Dataset Size 30k

Table 5. Evaluation Parameters.

Parameter Value

Max New Tokens 38912
Thinking Mode Enabled
Top-p 0.95
Top-k -1
Min-p 0.0
Presence Penalty 0.0
Samples per Prompt 16

Table 6. Training Configuration for GRPO and OPSD

Parameter GRPO OPSD

Learning Rate 2× 10−5 2× 10−5

Batch Size (per device) 1 1
Gradient Accumulation Steps 4 4
Effective Batch Size 32 32

LoRA Rank (r) 64 64
LoRA Alpha (α) 128 128
LoRA Target Modules q proj, k proj, v proj, o proj,

gate proj, up proj, down proj

Max Completion Length 16000 2048

Number of Generations per Prompt 8 1
Temperature 1.2 1.2
KL Coefficient (β) 0.0 –

All experiments were conducted using 8 A100 GPUs with gradient checkpointing and Flash Attention 2 for memory
efficiency. We use the AdamW (Loshchilov & Hutter, 2017) optimizer and bfloat16 precision for all training runs. For
OPSD, unless otherwise stated, we used full-vocabulary logit distillation.
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