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Motivation

Recently, autoregressive (AR) LLMs benefit from post-training w/ RL

❏ E.g. DeepSeek-R1, Kimi K1.5.
❏ RL can incentivize/elicit sophisticated reasoning in LLMs.

However, these advances have primarily been limited to autoregressive 
LLMs that operate through left-to-right, sequential inference.



Diffusion Large Language Models (dLLMs) as AR alternatives



dLLMs generate through an iterative denoising process,
in a coarse-to-fine manner.

Figure: a generation example of Dream-7B-instruct.



Why dLLMs?

Faster Inference due to decoding multiple tokens at once

Breaks the reversal curse by bidirectional modeling

Controllability: Useful for 
infilling tasks

output tokens / second



Background : Diffusion Language Models

❏ Prior works show that masked dLLMs consistently perform better than uniform 

dLLMs and scales better (Lou et al., 2024; Campbell et al., 2024)

❏ Recent large dLLMs that scales > 7B, such as DiffuLLaMA, LLaDA and Dream, 

are all based on masked dLLMs

❏ We focus on applying policy gradient RL to masked dLLMs in this work

Motivation

RL progress has been limited to the AR context

Goal: Explore RL for bidirectional dLLMs



❏ Forward process: corrupts token 
sequences with [Mask] (Sahoo et al., 
2024; Shi et al., 2024; Austin et al., 2021; 
Ou et al., 2024; Zheng et al., 2024) 

❏ At any time t, tokens remain 
unmasked with probability      (noise 
schedule), which strictly decreases as 
t increases.

❏ When t = 1, all tokens become 
masked.

Background : Masked dLLMs



Training masked dLLMs:

❏ Given a specific noise schedule:   .  ; In LLaDA: 
❏ Initialize an unmasking predictor     (e.g. transformer) with bidirectional 

attention.
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Training masked dLLMs:

❏ Given a specific noise schedule:   .  ; In LLaDA: 
❏ Initialize an unmasking predictor     (e.g. transformer) with bidirectional 

attention.
❏ Sampling t ∈ [0, 1), masking tokens accordingly, and predicting originals 

tokens and train with cross-entropy loss:

Background : Masked dLLMs



Training masked dLLMs: Adapt from existing AR models.

❏ DiffuLLaMA: adopted from Llama 2 7B
❏ Dream: adopted from Qwen2.5 7B
❏ Predict shifted masked tokens, allowing for initialization with AR models
❏ Adapt causal attention mask to bidirectional mask

Background : Masked dLLMs



❏ Policy Gradient Methods are widely used to fine-tune LLMs.
❏ PPO requires a state value function to estimate advantages → high compute and memory.
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❏ Policy Gradient Methods are widely used to fine-tune LLMs.
❏ PPO requires a state value function to estimate advantages → high compute and memory.

❏ Group Relative Preference Optimization (GRPO)
❏ GRPO avoids learning a value model.
❏ For a query, sample G responses                         from policy.
❏ Assign advantage to all tokens in responses using:

❏ GRPO objective: clipped ratio + KL penalty

Background : Policy Gradient Methods for LLMs



❏ Policy gradient methods maximize the expected return by computing the gradient 
of the expected reward wrt the log-prob of actions taken under the policy.

❏ GRPO objective requires computing the likelihood at both the token level and the 
sequence level.

Log-Likelihood Computation



❏ AR LLMs directly model the exact per-token log-probabilities with CE loss
❏ The sequence-level log-probability can be easily computed through the chain rule 

using one forward pass:

❏ However, dLLMs do not adhere to sequential factorization of the sequence 
log-probability - they optimize an ELBO

❏ The exact marginal likelihood is intractable

Log-Likelihood Computation



Monte Carlo Estimation utilizes excessive memory

n_mc = 128 => large computational graph with hundreds of forward passes 



❏ Recall: dLLMs treat the token sequence as a whole and its sequence-level 
log-probability lacks the AR decomposition. 

❏ To efficiently estimate it, we use a simple mean-field decomposition:

❏ Approximate a complicated joint distribution over many variables with a 
product of simpler, independent distributions.

Sequence-Level Log Likelihood with
Mean Field Decomposition



❏ The per-token log-probability are also expensive to compute since the decoding 
process invokes the unmasking predictor      multiple times

❏ To efficiently estimate it, we use a simple one-step estimator:
❏ We perturb q where every token is randomly masked out, resulting in q’.

❏ We then do one-step unmasking to obtain and use it as an estimation of

Sequence-Level Log Likelihood with
Mean Field Decomposition



Efficient one-step log prob estimation
Efficient One-Step Log-Prob Estimation



Efficient one-step log prob estimation

Why apply 
random masking 

to prompt?

Efficient One-Step Log-Prob Estimation



Generation Reuse during Policy Gradient Optimization

❏ As other online methods, GRPO is bottlenecked by generation time
❏ A key approach to make GRPO more sample-efficient is to reuse generated 

samples during optimization. Conventionally used with PPO

Generation Reuse during Policy Gradient Optimization



❏ In practice, scaling mu too large will impact learning, due to overfitting. 
❏ In TRL’s open-r1 update, they suggested using mu=2 or 4 for Qwen2.5

(https://huggingface.co/blog/open-r1/update-3)

Generation Reuse during Policy Gradient Optimization



Applying different random masks to prompt, creating diverse 
input of the same prompt + completion pair at each iteration

Random Prompt Masking Mitigates Overfitting



Random prompt masking allows scaling to larger mu
Random Prompt Masking enables scaling to larger mu



Stage 1: Instilling reasoning behavior through SFT.

SFT on high-quality reasoning dataset.

Stage 2: Reinforcing good reasoning traces via RL.

Apply diffu-GRPO on the SFT model.

We instantiate d1 using LLaDA-8B-Instruct as our base model

d1: Framework to Scale dLLM Reasoning



Stage 1: Masked SFT on s1K Dataset

❏ Dataset: s1K (Muennighoff et al., 2025)
❏ 1,000 high-quality reasoning questions
❏ Detailed step-by-step problem-solving traces
❏ Includes verification and backtracking mechanisms

Stage 1 : Masked SFT on Reasoning Traces from s1K



Stage 2: DiffuGRPO on 6 reasoning tasks 

❏ Train on each tasks individually:
❏ Math reasoning: GSM8K, MATH500
❏ Logical reasoning: Countdown, 4x4 Sudoku Puzzles
❏ Code: HumanEval, MBPP

❏ Reward Functions: 
❏ Rule-Based reward. 

❏ Correctness
❏ Format 

❏ Fraction of passed unit tests for code

Stage 2 : diffu-GRPO on 6 reasoning tasks



Masked SFT on reasoning traces from s1k 
instill LLaDA with self-correction and 
backtracking behaviors

ResultsQualitative Example



Results

❏ diffu-GRPO consistently outperforms both base LLaDA and SFT
❏ diffu-GRPO consistently improve over their initialization checkpoint
❏ d1 recipe yields the highest gains
❏ diffu-GRPO improves reasoning beyond training sequence length (trained with fixed 256 seq 

len generation)

Results



Results: Code

❏ Trained on a single code dataset
❏ diffu-GRPO consistently outperforms over the initialization checkpoint
❏ LLaDA + SFT < LLaDA, since the s1k dataset does not contain any datapoints with code

Results : Code



Comparison to SoTA dLLMs and similar sized AR LLMs
SOTA dLLMs vs similar-sized AR models



Effective Tokens Usage

❏ Effective tokens (# of non-padding, non-EOS tokens) grows with predefined 
sequence length.

❏ Applying SFT increase effective tokens.
❏ Applying RL alone decreases effective tokens.

Effective Tokens Usage



Unified RL Training

=> 
Multi-task 
training

Unified RL Training



Ablation on the prompt masking rate

Lower masking probabilities (0.1, 0.3) show more stable and higher performance, while 
higher masking probabilities (0.5, 0.7) demonstrate increased instability particularly in 
later training stages.

A better 
masking 
strategy?

Ablation on Prompt Masking Rate



Limitation & Future Work Directions

❏ Fixed Generation Length: LLaDA requires predetermined output length, 
limiting the model's ability to discover optimal reasoning paths, hindering 
emergence of advanced reasoning strategies.
❏ Future Direction: Apply diffu-GRPO on Block Diffusion to enable 

flexible-length generation.
❏ Extend LLaDA to support flexible generation length.

Limitations and Future Directions



Limitation & Future Work Directions

❏ SFT Limitation:
❏ LLaDA needs to take loss on the PAD tokens to learn to terminate its generation. The 

amount of padding depends on the batch size, which will affect the performance.
❏ We observe that training on truncated sequences will lead LLaDA to generate 

unfinished response.
❏ Future Direction: a more robust SFT algorithm.

Limitations and Future Directions



Code Paper Website

Thank you!
Thank You!

https://github.com/dllm-reasoning/d1
https://arxiv.org/abs/2504.12216
https://dllm-reasoning.github.io

