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Motivation

Recently, autoregressive (AR) LLMs benefit from post-training w/ RL

1  E.g. DeepSeek-R1, Kimi K1.5.
A RL can incentivize/elicit sophisticated reasoning in LLMs.

However, these advances have primarily been limited to autoregressive
LLMs that operate through left-to-right, sequential inference.



Diffusion Large Language Models (dLLMs) as AR alternatives
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TL;DR: We introduce LLaDA, a diffusion model with an unprecedented 8B scale, @JiachengYel5

trained entirely from scratch, rivaling LLaMA3 8B in performance. ) ) ) )
4 Excited to announce Dream 7B (Diffusion reasoning model): the most

powerful open diffusion large language model to date.
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We are excited to introduce Mercury, the first commercial-grade
HumanEval diffusion large language model (dLLM)! dLLMs push the frontier of
— intelligence and speed with parallel, coarse-to-fine text generation.

Write a function for LLM inference.
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dLLMs generate through an iterative denoising process,

in a coarse-to-fine manner.

Figure: a generation example of Dream-7B-instruct.



Why dLLMs?
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Transformer Decoder with Causal Attention

1 i i 1 1 Write a story that ends with "Finally, Joey and Rachel get
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(b) Diffusion Modeling in Dream

Faster Inference due to decoding multiple tokens at once

8 A: The director of “A Finally, Joey and Rachel get married.
s i i ? Journey Through
Q: Who is Daphne Barrington? @ i Yy g [iNfsiceacasian
ime”.

same fact order

e X Controllability: Useful for

Q: Who directed “A Journey Through Time”? @ A: John Smith. LLM fails on

reversed fact order infilling tasks
Breaks the reversal curse by bidirectional modeling



Motivation

RL progress has been limited to the AR context Model  Recipe
Qwen2.5 7B AR SFT+RL
LLaMA3 8B AR SFT+RL

Goal: Explore RL for bidirectional dLLMs LLaDA 8B  Diffusion  SFT
Dream 7B  Diffusion SFT

Background : Diffusion Language Models

A Prior works show that masked dLLMs consistently perform better than uniform
dLLMs and scales better (Lou et al., 2024; Campbell et al., 2024)

A Recent large dLLMs that scales > 7B, such as DiffuLLaMA, LLaDA and Dream,
are all based on masked dLLMs

A We focus on applying policy gradient RL to masked dLLMs in this work



Background : Masked dLLMs

A Forward process: corrupts token
sequences with [Mask] (Sahoo et al.,

Diffusion Training: Average of unmasking losses

2024; Shi et al., 2024; Austin et al., 2021; =] ... =)
Ou et al., 2024; Zheng et al., 2024) | 1 , A |
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Background : Masked dLLMs

Training masked dLLMs:

3 Given a specific noise schedule: &t ; In LLaDA: oy =1 — ¢
[ Initialize an unmasking predictor fy(e.g. transformer) with bidirectional
attention.



Background : Masked dLLMs

Training masked dLLMs:

3 Given a specific noise schedule: &t ; In LLaDA: oy =1 — ¢

[ Initialize an unmasking predictor fy(e.g. transformer) with bidirectional
attention.

[ Samplingt € [0, 1), masking tokens accordingly, and predicting originals
tokens and train with cross-entropy loss:

1 & k k
_]EtNU[Oll)r X0~Pdatas Xt~qtj0 (Xt|X0) | 7 E 1[x; = mask]log fo(xg | xt)
k=1



Background : Masked dLLMs

Training masked dLLMs: Adapt from existing AR models.

DiffuLLaMA: adopted from Llama 2 7B

Dream: adopted from Qwen2.5 7B

Predict shifted masked tokens, allowing for initialization with AR models
Adapt causal attention mask to bidirectional mask

Iy Ry My
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! ! ! !

Transformer Decoder with Full Attention J rrrrr king
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(b) Diffusion Modeling in Dream



Background : Policy Gradient Methods for LLMs

A Policy Gradient Methods are widely used to fine-tune LLMs.

A PPO requires a state value function to estimate advantages — high compute and memory.



Background : Policy Gradient Methods for LLMs

A Policy Gradient Methods are widely used to fine-tune LLMs.

A PPO requires a state value function to estimate advantages — high compute and memory.

A Group Relative Preference Optimization (GRPO)

A GRPO avoids learning a value model.
[ For a query, sample G responses {01,03,...,0g} from policy.
A Assign advantage to all tokens in responses using:
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Background : Policy Gradient Methods for LLMs

A Policy Gradient Methods are widely used to fine-tune LLMs.
A PPO requires a state value function to estimate advantages — high compute and memory.
A Group Relative Preference Optimization (GRPO)

A GRPO avoids learning a value model.
[ For a query, sample G responses {01,03,...,0g} from policy.
A Assign advantage to all tokens in responses using:

ri—mean({r]- ]Gzl)

std({r]- ]Gzl)
A GRPO objective: clipped ratio + KL penalty

A’-‘(n) =

1

L%RPO(O) = ]E[q ~ P(Q)l {Oi}?zl ~ T4 (Olq)]
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G =1 |0i| | 6,14 (Oi’th, 0i,<t) “ P 6,414 (Oi,t Iql 0i,<t) vt ﬁ [ ref]




Log-Likelihood Computation

A Policy gradient methods maximize the expected return by computing the gradient
of the expected reward wrt the log-prob of actions taken under the policy.
A GRPO objective requires computing the likelihood at both the token level and the

sequence level.

Jerpo(6) = E[q ~ P(Q), {0}y ~ 7,,,(Olg)]

1 1 o min g (Oi,t|q, 0i,<t) A . g (oi,th, 0i,<t) A 1
5 Z I_ Ai,t;ChP 11_811"'8 Ai,t _;BDKL |7l'6||7rref_|
=1

T 0o1d (Oi,thr 0i,<t) 6,14 (Oi,thl 0i,<t)




Log-Likelihood Computation

3
3

AR LLMs directly model the exact per-token log-probabilities with CE loss
The sequence-level log-probability can be easily computed through the chain rule
using one forward pass:

log 7taR (0]9) = L', log mtar (0¥|,0<F)

A However, dLLMs do not adhere to sequential factorization of the sequence
log-probability - they optimize an ELBO
A The exact marginal likelihood is intractable



Monte Carlo Estimation utilizes

Algorithm 3 Conditional Log-likelihood Evaluation of LLaDA

Require: mask predictor py, prompt po, response g, the number of Monte Carlo estimations 7,

1: log likelihood = 0

: for i < 1ton,,c.do | n_mc = 128 => large computational graph with hundreds of forward passes
T | I Am— # L is the sequence length of 7
Obtain 7; by uniformly sampling [ tokens from 7 without replacement for masking
log likelihood = log likelihood + £ S | 1[ri = M]log pg(ré|po, 1)

end for

: log_likelihood = log_likelihood /7y,

: Return log_likelihood

Salim ol




Sequence-Level Log Likelihood with

Mean Field Decomposition

d Recall: dLLMs treat the token sequence as a whole and its sequence-level
log-probability lacks the AR decomposition.
A To efficiently estimate it, we use a simple mean-field decomposition:

log 779 (0|q) by L1\ log 779 (0k|q)

A Approximate a complicated joint distribution over many variables with a
product of simpler, independent distributions.



Sequence-Level Log Likelihood with

Mean Field Decomposition

A The per-token log-probability are also expensive to compute since the decoding
process invokes the unmasking predictor fg multiple times

A To efficiently estimate it, we use a simple one-step estimator:
A We perturb g where every token is randomly masked out, resulting in q'.

log fo(0*|q' ® mask...® mask)

A We then do one-step unmasking to obtain and use it as an estimation of

log 719(0%|q), 1 <k < |o].



Efficient One-Step Log-Prob Estimation

. One-Step
/ Masked dLLM Generation \ /Lo g Prob Estimation
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Efficient One-Step Log-Prob Estimation

/ Masked dLLM Generation \ /

Prompt Completion
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Generation Reuse during Policy Gradient Optimization

A As other online methods, GRPO is bottlenecked by generation time
A Akey approach to make GRPO more sample-efficient is to reuse generated
samples during optimization. Conventionally used with PPO

Algorithm 1 Iterative Group Relative Policy Optimization

Input initial policy model g, ; reward models r,,; task prompts D; hyperparameters ¢, 8, u
1: policy model g « 7o,
2: foriteration=1,...,I1do

3: reference model 7, < g

4 forstep=1,...,Mdo

5 Sample a batch Dy, from D

6: Update the old policy model mg,,, < 7o

7 Sample G outputs {0;}%, ~ mq,, (- | q) for each question q € D

8: Compute rewards {r;}¢, for each sampled output o; by running r,

9: Compute A;, for the t-th token of o; through group relative advantage estimation.
10: for GRPO iteration=1, ..., u do
11: [ Update the policy model 7y by maximizing the GRPO objective (Equation ﬁ)]

122 Update r,, through continuous training using a replay mechanism.

Output 7y




Generation Reuse during Policy Gradient Optimization

A In practice, scaling mu too large will impact learning, due to overfitting.
A In TRL's open-r1 update, they suggested using mu=2 or 4 for Qwen2.5

train/reward

— Qwen2.5-0.5B-GRPO-main = Qwen2.5-0.5B-GRP0O-2899- =1 = Qwen2.5-0.5B-GRP0O-2899- =2
= Qwen2.5-0.5B-GRP0O-2899- =8 = Qwen2.5-0.5B-GRP0O-2899- =4

e ———— il
-50
-100
-150
Time (minutes)
2 4 6 8 10 12

(https://huggingface.co/blog/open-r1/update-3)



Random Prompt Masking Mitigates Overfitting

ﬁlandom Prompt Masking for Each Gradient Update Iteraticm

Input: Partially-masked Prompt + Fully-masked Completion Per-Token Log Prob

er-1| (L RN
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ver = n [ B EEEE-ENCE

\ q' ®mask @ ... D mask logfe(o®|q’ ®mask...d® myk)

Different masking patterns for same prompt-completion pair

Applying different random masks to prompt, creating diverse
input of the same prompt + completion pair at each iteration



Random Prompt Masking enables scaling to larger mu

Learning Efficiency Comparison
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d1: Framework to Scale dLLM Reasoning

Stage 1: Instilling reasoning behavior through SFT.
SFT on high-quality reasoning dataset.
Stage 2: Reinforcing good reasoning traces via RL.

Apply diffu-GRPO on the SFT model.

We instantiate d1 using LLaDA-8B-Instruct as our base model



Stage 1 : Masked SFT on Reasoning Traces from s1K

[ Dataset: s1K (Muennighoff et al., 2025)
1,000 high-quality reasoning questions
A Detailed step-by-step problem-solving traces
A Includes verification and backtracking mechanisms
SFT

Prompt Response
A A

\ f

-‘XIXI

Mask predictor

| |



Stage 2 : diffu-GRPO on 6 reasoning tasks

L Train on each tasks individually:
A Math reasoning: GSM8K, MATH500
A Logical reasoning: Countdown, 4x4 Sudoku Puzzles
d Code: HumanEval, MBPP
[ Reward Functions:
A Rule-Based reward.
A Correctness
d  Format

d  Fraction of passed unit tests for code



Qualitative Example

Question: Jennifer’s dog has 8 puppies 3 of which have spots. Brandon’s dog has 12
puppies 4 of which have spots. What percentage of all the puppies have spots?

Masked SFT on reasoning traces from s1k
instill LLaDA with self-correction and
backtracking behaviors

<reasoning> To determine the percentage of all the puppies that have spots, we
need to follow these steps:

1. Calculate the total number of puppies from both dogs.

2. Calculate the total number of puppies with spots from both dogs.

3. Determine the percentage of puppies with spots.

First, let’s find the total number of puppies from both dogs:

- Jennifer’s dog has 8 puppies.

- Brandon’s dog has 12 puppies.

- Total number of puppies = 8 + 12 = 20.

Next, let’s find the total number of puppies with spots from both dogs:

- Jennifer’s dog has 3 puppies with spots.

- Brandon’s dog has 4 puppies with spots.

- Total number of puppies with spots =3 +4=7.

Now, we need to determine the percentage of puppies with spots. The formula for
percentage is:

Percentage = (Number of puppies with spots) < I

Total number of puppies

Substituting the values we have:

7
Percentage ( 2 0) x 100

To simplify the fraction, we find the greatest common divisor (GCD) of 7 and 20,
which is 1.

7

20
However, it seems there was a mistake in the calculation. Let’s recheck the steps.
1. Total number of puppies = 8 + 12 = 20.
2. Total number of puppies with spots =3 + 4 =7.
3. Percentage of puppies with spots = (Z) x 100.
Let’s calculate the percentage correctly:

=720

7x100 700
0 20 P

7
Percentage = (%) x 100 =

The calculation answer. < /reasoning><answer> < /answer>




oo

Table 1: Model performance on GSMS8K, MATH500, Countdown, and Sudoku Bench-
marks: All models are evaluated with 0-shot prompting, where the generation sequence
length varies from 128 to 512. Green values indicate best performance and blue values
indicate second-best performance in each column. The results demonstrate that d1-LLaDA
consistently outperforms all other models, applying diffu-GRPO consistently improves the
starting checkpoint, and diffu-GRPO alone shows better performance than SFT.

GSMSK (0-shot)

MATHS500 (0-shot)

Countdown (0-shot)

Sudoku (0-shot)

Model / Seq Len 128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B-Instruct 68.7 76.7 782 260 324 362 207 195 16.0 11.7 6.7 55
+ SFT 665 788 811 262 326 348 203 145 23.8 165 85 4.6
+ diffu-GRPO 726 79.8 819 332 372 392 332 313 37.1 184 129 11.0
+ SFT + diffu-GRPO

(d1-LLaDA) 73.2 811 821 33.8 38.6 40.2 34.8 32.0 42.2 221. 167" 95

diffu-GRPO consistently outperforms both base LLaDA and SFT

diffu-GRPO consistently improve over their initialization checkpoint
d1 recipe yields the highest gains

diffu-GRPO improves reasoning beyond training sequence length (trained with fixed 256 seq

len generation)



Results : Code

Table 3: Effectiveness of diffu-GRPO on Coding Benchmarks: Evaluated with and w/o diffu-GRPO
on HumanEval and MBPP. diffu-GRPO consistently improves over initialization checkpoint.

HumanEval MBPP
Model / Seq Len 128 256 512 128 256 512
LLaDA-8B-Instruct 195 317 335 331 381 416
+ diffu-GRPO 244 378 323 409 432 416
A (diffu-GRPO gain) +49 +6.1 -1.2 +7.8 +51 +0.0
LLaDA-8B-Instruct + SFT (s1k) 11.6 17.7 11.0 257 265 25.7
+ diffu-GRPO 213 274 220 385 323 292
A (diffu-GRPO gain) +9.7 +9.7 +11.0 +128 +58 +3.5

A Trained on a single code dataset
d  diffu-GRPO consistently outperforms over the initialization checkpoint
A LLaDA+ SFT < LLaDA, since the s1k dataset does not contain any datapoints with code



SOTA dLLMs vs similar-sized AR models
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Effective Tokens Usage

A Effective tokens (# of non-padding, non-EOS tokens) grows with predefined
sequence length.

A Applying SFT increase effective tokens.

A Applying RL alone decreases effective tokens.

GSM8K (0-shot) MATH500 (0-shot)

400
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100

Num Effective Tokens

0 Seq=128  Seq=256  Seq=512 ° Seq=128 Seq=256  Seq=512

0 LLaDA-8B-Instruct B + SFT [+ diffu-GRPO B + SFT + diffu-GRPO (d1-LLaDA)



Unified RL Training

GSM8K MATH

(= Table 2: Unified Model Performance Across Rea-

soning Tasks: For diffu-GRPO and d1-LLaDA

W variants, a single model was trained on the com-

] [ bined dataset of GSM8K, MATH500, Countdown,

e R LA S i 1 and Sudoku. Green and blue values indicate the

Gradient Update Steps Gradient Update Steps => beS t an d secon d-beS t pe I'formance.
COUNTDOWN SUDOKU Multi-task

ol el sl WA training GSMS8K MATH500 Countdown  Sudoku
040 - Model / Seq Len 128 256 128 256 128 256 128 256
ZEZ: W ol LLaDA-8B-Instruct 687 767 260 324 207 195 117 6.7
el + SFT (s1k) 66.5 788 262 326 203 145 165 85
020 S T + combined diffi-GRPO 724 782 302 366 217 195 229 157
0 1000 2000 3000 4000 5000 0 5000 10000 15000 combined d1-LLaDA 751 81.1 298 354 301 328 219 154

Gradient Update Steps Gradient Update Steps




Ablation on Prompt Masking Rate

Lower masking probabilities (0.1, 0.3) show more stable and higher performance, while
higher masking probabilities (0.5, 0.7) demonstrate increased instability particularly in
later training stages.

Reward Trends on GSM8K
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Limitations and Future Directions

A Fixed Generation Length: LLaDA requires predetermined output length,
limiting the model's ability to discover optimal reasoning paths, hindering
emergence of advanced reasoning strategies.

A Future Direction: Apply diffu-GRPO on Block Diffusion to enable
flexible-length generation.
4 Extend LLaDA to support flexible generation length.



Limitations and Future Directions

A SFT Limitation:

A LLaDA needs to take loss on the PAD tokens to learn to terminate its generation. The
amount of padding depends on the batch size, which will affect the performance.

A We observe that training on truncated sequences will lead LLaDA to generate
unfinished response.

A Future Direction: a more robust SFT algorithm.



Thank You!



https://github.com/dllm-reasoning/d1
https://arxiv.org/abs/2504.12216
https://dllm-reasoning.github.io

